Diffeomorphisms and Nonlinear Heat Flows
نویسندگان
چکیده
We show that the gradient flow u on L2 generated by the energy functional I[u] := ∫ U Φ(detDu) dx for vector-valued mappings is in some sense “integrable”, meaning that (i) the inverse Jacobian β := (detDu)−1 satisfies a scalar nonlinear diffusion equation, and (ii) we can recover u by solving an ODE determined by β.
منابع مشابه
Insight into the Boundary Layer Flows of Free Convection and Heat Transfer of Nanofluids over a Vertical Plate using Multi-Step Differential Transformation Method
This paper presents an insight into the boundary layer of free convection and heat transfer of nanofluids over a vertical plate at very low and high Prandtl number. Suitable similarity variables are used to convert the governing systems of nonlinear partial differential equations of the flow and heat transfer to systems of nonlinear ordinary differential equations which are solved using multi-s...
متن کاملTorus Maps from Weak Coupling of Strong Resonances
This paper investigates a family of diffeomorphisms of the two dimensional torus derived from a model of an array of driven, coupled lasers (Braiman et al. 1995). It gives a negative answer to a question raised by Baesens et al. (1991a) about two parameter families of diffeomorphisms and flows of the two dimensional torus by exhibiting resonance regions in which the two parameter family has no ...
متن کاملViscoelastic Micropolar Convection Flows from an Inclined Plane with Nonlinear Temperature: A Numerical Study
An analytical model is developed to study the viscoelastic micropolar fluid convection from an inclined plate as a simulation of electro-conductive polymer materials processing with nonlinear temperature. Jeffery’s viscoelastic model is deployed to describe the non-Newtonian characteristics of the fluid and provides a good approximation for polymers. Micro-structural is one of the characteristi...
متن کاملSmooth Linearization for a Saddle on Banach Spaces
As a continuation of a previous work on linearization of class C of diffeomorphisms and flows in infinite dimensions near a fixed point, in this work we deal with the case of a saddle point with some non-resonance restrictions for the linear part. Our result can be seen as an extension of results by P. Hartman [2] and Aronson, Belitskii and Zhuzhoma [1] in dimension two. We also present an appl...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 2005